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Further work will be required to fully evaluate the
effect of the inductive reactance, together with its com-
pensations, in microstrip and stripline designs of imped-
ance transformers and filters.
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W aveguides of Arbitrary Cross Section by Solution of a

Nonlinear Integral Eigenvalue Equation

BARRY E. SPIELMAN, MEMBER, IEEE, AND ROGER F. HARRINGTON, FELLOW, IEEE

Abstract—The problem of electromagnetic wave propagation
in hollow conducting waveguides of arbitrary cross section is for-
mulated as an integro-differential equation in terms of fields at the
waveguide boundary. Cutoff wave numbers and wall currents appear
as eigenvalues and eigenfunctions of a nonlinear eigenvalue problem
involving an integro-differential operator. A variational solution is
effected by reducing the problem to matrix form using the method
of moments.

A specific solution of the problem is developed using triangle
expansion functions in the method of moments. The solution is sim-
plified by symmetry considerations and is implemented by two digi-
tal computer programs. Listings and full documentation of these
programs are available. This solution yields accurate determinations
of cutoff wave numbers, wall currents, and distributions of both
longitudinal and transverse modal field components for the first
several modes. Illustrative computations are presented for the single-
ridge waveguide, which has a complicated boundary shape that does
not lend itself to exact solution.

I. INTRODUCTION

TNLECTROMAGNETIC wave propagation in hol-
] low conducting waveguides of arbitrary cross

LA section is a problem of considerable interest. An
interesting review paper by Davies [1] gives a compara-
tive discussion of many of the methods previously ap-
plied to this general problem. His discussion makes clear
that no single solution method has proved to be best for
all requirements that might be imposed.

In this paper a new solution for waveguides of arbi-
trary cross section is presented. The approach is based
on an integral operator formulation which affords a
unified treatment of the various classes of waveguide
shape. In principle, the first several modes can be ana-
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lyzed provided the boundary of the waveguide is closed.
The convergence characteristics and accuracy of the
method have been demonstrated previously [2]. Ex-
ample calculations of cutoff wave numbers and field
distributions are presented here for modes of the single-
ridge waveguide.

II. INTEGRAL FORMULATION

The problem is formulated as follows. For waveguides
containing only a homogeneous isotropic medium, the
electric field within the waveguide is expressed in terms
of the vector potential A and scalar potential ¢ as

E = —jwA — V¢ (1)
where
A=ud JGER) (2)
C
1
$=— f oG(ER)dl (3)
C

Here, G(kR) is the two-dimensional Green’s function
and can be expressed in terms of H(®, the Hankel func-
tion of the second kind zero order as

G(kR) = 4% Hy®(kR). (4)

Also, C is the contour bounding the waveguide cross
section, d/ is the element of arc along C, R is the distance
between a source point and the field point, & is the wave
number, and u and € are the permeability and permit-
tivity of the medium within the waveguide. The quan-
tities J and ¢ are the wall current and charge, respec-
tively, related by the equation of continuity. The
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boundary condition is expressed as
Epun =10 (5)

where tan denotes the tangential component of electric
field on C. The problem can now be stated succinctly as

L(J) =0 (6)
where L is the integro-differential operator
L(]) = _Etan = []"-’A + v¢]tan- (7)

Solution of (6) gives cutoff wave numbers {ka}
= {ky, ks, - - - } and corresponding wall currents, {J,}
= {]1, Joy o }, on C. The modal fields are functions
of {],,} and can be computed once the currents are
known.

III. REpUCTION TO MATRIX FORMULATION

The determination of waveguide cutoff wave numbers
and wall currents requires the solution of (7) subject to
the boundary condition in (5). To facilitate such a solu-
tion, (7) is reduced to matrix form by the method of
moments, which is closely related to Galerkin’s method

3], [4].
A. Method of Moments Reduction

For the method of moments, define the inner product

W, 1) = f W Jdi ®)

where the vectors W and J are tangential to C. A set of
expansion functions { J. } is chosen and the current on C
is expanded as

J =2 T1.Ja (9)

Using this expansion for J and invoking the linearity of
the operator L in (7)

Z InL(Jn) = — Etan. (10)
A set of testing functions { W} is now chosen such that
each W, is tangential to C. Taking the inner product of
each W,, with (10) yields

2 L{Wa, L(J2)) = (W, —E) (11)
for m=1, 2, - - - . Equation (11) can be written as the
generalized network matrix equation

[z][1] = [V] (12)

which upon application of the boundary condition in (35)
becomes

[z][1] = [o]. (13)
The present form of the elements in the impedance

matrix is

S = f W (joh, + Wéa)dl. (14)
[+
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Fig. 1. Details of the contour subdivision.

The subscript # denotes that A, and ¢, are potentials
due to J, and ¢,.. Applying the one-dimensional form of
the divergence theorem to ¢, W,, (14) is transformed to
the computationally advantageous form [2]

Zmn = J0 @ (Wn A, + omdn)dl (15)
c
where o, is defined as
1
Om = —"—VWm (16)
jow

To this point the matrix formulation is completely
general and was achieved without reference to TE or
TM mode characteristics. The wall current for TE
modes at cutoff is two-dimensional and circumferen-
tially directed. For such a current the impedance ele-
ment form in (15) is suitable.

However, for TM modes at cutoff the wall current is
two-dimensional, axially directed, and hence diver-
genceless. It follows that the impedance element in (15),
for TM modes, becomes

Zum = j0 @ W Audl. (17
C

In the following sections, specific expansion and testing
functions are used with (15) and (17) to effect solutions
for TE and TM modes, respectively.

B. TE Matrix Elements

The TE mode impedance matrix elements, expressed
by (15), can be cast into a form convenient for computa-
tion by first writing the element in greater detail as

1
B, = f dz'f di [jwnwm-Jn +— (v’~Wm)(v-Jn)]
c ¢ Juwe

LT

Here, the unprimed symbols d! and V refer to source lo-
cation variation, while the corresponding primed sym-
bols relate to variation in field point location.

A specific formulation evolves by dividing the contour
C into N segments, not necessarily equal in length, The
end points of these segments are defined by a set of
(N41) parameters {I=4L=0, I=b, - - -, I=Iyu}, as
shown in Fig. 1. Here, / is the path length proceeding
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Fig. 2. (a) Triangle function. (b) Derivative of triangle function

with pulse approximations indicated by broken lines.

counterclockwise around the contour C from any con-
venient reference point /=/;=0.

The sets of expansion and testing functions are
chosen as triangle functions. It is known that subsec-
tional expansions using pulse or triangle functions give
well-conditioned matrices [3]. Triangle functions were
chosen for use here since the current will be differenti-
ated to obtain the charge. Furthermore, it has been de-
termined empirically that a triangle function expansion
yields computed wave numbers which converge to exact
values about twice as fast as those computed using a
pulse function expansion. The triangle expansion and
testing functions are defined as

Jk=Wk=T(l_lk)UZ, k=1,2,'--,N (19)

where T is the triangle function represented by a solid
line in Fig, 2(a). Also, u; is the unit vector in the direc-
tion of increasing parameter / and is tangent to C at
path length value I. Now 2., can be written as

lm+1 ln+1
B = f A f dl l:jqu(l’— )T — 1) (ur- )
i

m—1 n—1

e — e — 1) M} (20)

Jwe

where 7" is the derivative of a triangle function and is
represented by the solid line in Fig. 2(b).

The evaluation of the integrals in (20) is facilitated
by making the following approximations. The triangle
functions are approximated by four pulses with ampli-
tudes 4, £, &, 1, as shown in Fig. 2(a). The derivative 7’
of the triangle function is represented exactly by four
pulses with the amplitudes 1/Ali_y, 1/Ali_, —1/AlL,
—1/Al, as is illustrated in Fig. 2(b). For the nth ex-
pansion function, the index p =1, 2, 3, 4 designates the
four pulse intervals, respectively, for increasing path
length. Similarly, the index g¢=1, 2, 3, 4 is assigned to
the mth testing function.
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Fig. 3. Straight-line representation of the waveguide contour.

Consider the contour interval spanned by the kth ex-
pansion or testing function, as is shown in Fig. 3. In this
figure the actual contour interval is indicated by a
broken line. The evaluation is facilitated by defining the
quantities depicted in Fig. 3.

The portion of the actual waveguide contour, repre-
sented by a broken line in the same figure, is effectively
replaced by these straight lines for the evaluation of the
integrals. Furthermore, define the additional quantities

Aly = gy — U, k=1,2 34 (21)
’ {1/4, E=14 o
"3/, E=23
—1
- h 1 X Ik
Al
T =1 (23)
— e <1<k
Al

As is shown in detail elsewhere [2], the TE mode imped-
ance element is given in final form by

1 4
Zmn = > [4(kAL) (BAL) T Tp(ug uy) F 1]G,, (24)
160)6 p,g=1

where for coincident pulse intervals

2 vRAL
Gp=1—j=log—"- (25)
T 8e
For noncoincident pulse intervals
Gop = Ho®(Ryp)- (26)

In (24) the upper sign is taken for (p, ¢2>3) or (p, ¢<2);
otherwise, the lower sign is taken. The unit vectors u,
and u, are parallel to the ¢th and pth straight-line seg-
ments representing the gth and pth straight-line seg-
ments representing the gth and pth pulse intervals, re-
spectively. At, and A¢, are determined by

Ay =ty — by, k=123 4 (27)
and R, is the distance between the centers of the gth
and pth pulse intervals. The remaining quantities v and
e in (25) are the natural logarithm of Euler’s constant
and the natural logarithm base, respectively. It is sig-
nificant that the use of (24) produces a symmetric ma-
trix, enabling a reduction in the effort necessary in

matrix calculation.
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C. TM Mairix Elements

By following a procedure analogous to that used for
TE mode matrix elements, the TM mode matrix ele-
ments can be written as [2]

1 4
Zmp = T Z [(kAtp) Tqu]qu

4dwe 5,91

(28)

where G, is defined by (25) or (26), depending on
whether the source and field pulse intervals are coinci-
dent or noncoincident, respectively. The pulse ampli-
tudes 7'y and 7, are defined by (22). The interval
lengths A¢, and Atf, are expressed by (21). The use of
(28) for TM mode impedance element calculation pro-
duces a symmetric matrix with resulting computa-
tional simplification.

IV. DETERMINATION OF CUTOFF WAVE NUMBERS

It has been shown [2, pp. 74-80] that the waveguide
problem formulation given by (6) is a nonlinear eigen-
value problem. The cutoff wave numbers of the wave-
guide are the eigenvalues in this eigenvalue problem,
while the wall currents are the eigenfunctions. This sec-
tion sets forth the procedure used to determine these
eigenvalues, while the determination of the wall cur-
rents is discussed in the next section.

Nontrivial solutions of (13) exist only if the following
is true [5]:

| det Z(k) | = 0. (29)

Equation (29) will be precisely true only if the set of
expansion functions used in the method of moments is
complete on the domain of the operator L, given in (7).
In general, the use of a finite set of expansion functions
will provide only an approximation of the exact wall
currents. For adequately approximated wall currents
the cutoff condition is characterized by

| det Z(k) | = min. (30)

Equation (30) has been verified for a wide variety of
waveguide shapes and mode orders. Typical behavior of
!det Z(k)[ versus wave number is illustrated in Fig. 4.
The curve shown was computed for the TEy mode in a
2 X1 rectangular waveguide with 12 triangle functions
taken around the entire cross-section contour. The con-
vergence of computed cutoff wave numbers towards the
exact value as matrix size increases has been verified
empirically and is illustrated elsewhere [2, pp. 26-29].

The evaluation of the determinant of the impedance
matrix for all computations shown here was accom-
plished by Gauss’ method [6] adapted for use on com-
plex matrices. The determination of a minimum, satis-
fying (30), is made by searching !det Z(k)! as k is in-
creased by prescribed steps. The size of these steps is
reduced for successive scans of k after a minimum in
]det Z(k)l is located. The step sizes have been deter-
mined by experience.

581

T T T T T T T
10— —
~
©
o
2
10— —
|:|I
2x1 Rectangular Waveguide
12 Expansion Functions
10 | | |

Fig. 4. Magnitude of det Z versus normalized wave number in

vicinity of TEg,; cutoff.

V. DETERMINATION OF WALL CURRENTS

The electric and magnetic field intensities in a wave-
guide at cutoff are each uniform in phase over the guide
cross section. It follows that the wall currents are uni-
form in phase about the waveguide contour. The cur-
rents are taken to be purely real around this contour.
At cutoff, (13) can be separated as follows:

[z]l1] = [R]l1] + 7[X]11] = [0] (31)

where

[R] = Re[Z] and [X] = Im[Z]. (32)

For a complete expansion function set, (31) infers that
| det X | = 0. (33)

It follows from (33) that at least one of the eigenvalues
of matrix [X ] is zero.

For an incomplete expansion function set, the condi-
tion in (33) becomes

| det X | = min. (34)

Hence, an approximate wall current is an eigenvector of
the matrix [X(k)], corresponding to the eigenvalue of
smallest modulus. The matrix [X,] is the matrix [X]
evaluated at a cutoff wave number determined by the
method of the Section IV. Since (24) and (28) imply a
symmetric impedance matrix, then the matrix [X,] is
also symmetric. The eigenvalues of [X.] are therefore
real quantities.
The eigenvalue problem

[Xe][7] = A[1] (35)

is solved numerically by using the Givens—Householder
method [7]. For a waveguide with a number of degen-
erate or nearly degenerate modes, it is found that a
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corresponding number of smallest eigenvalues are ade-
quately computed, differing from each other by less
than one order of magnitude. The computed eigenvec-
tors corresponding to these multiple smallest eigenval-
ues are good approximations to the wall currents of the
multiple modes.

VI. SYMMETRY CONSIDERATIONS

If a waveguide cross section is symmetrical about an
axis in the transverse plane, then the problem can be
reduced to two cases, one for wall currents with even
symmetry about the axis and the other for currents with
odd symmetry. It has been shown elsewhere [2, pp. 81—
84] how significant savings in computation time and
storage requirements can be achieved when such sym-
metries exist. For larger arrays the computation time
for matrix element evaluation is reduced by nearly a
factor of 2, while the time required for the solution of
the eigenvalue problem is reduced by about a factor of
8.

The computations presented in this paper were done
utilizing the symmetry treatment discussed in this sec-
tion. The formulation prior to this section is not limited
to symmetric waveguides. The method for determining
field distributions, as presented next, is also not neces-
sarily limited to symmetric waveguides.

VII. MopAL FIELD DETERMINATION

The expressions used in the field evaluation scheme
described in this paper were derived in detail in [2]. The
scheme proceeds with the following consideration. Any
linear measurement at a point P due to a current J
about a contour C can be expressed as a linear function
of J, that is,

field (P) = f EJdl (36)
¢
where E7 is a known function. The current J in (36) is
computed by the method discussed in Section V.

The forms taken by (36) for the rectangular coordi-
nate modal field components are described as follows.
Let a rectangular coordinate system be defined with the
 axis in the direction of wave propagation. The TE and
TM modal field component expressions were developed
elsewhere [2, pp. 30~46, 91-95] and are described sym-
bolically by

field (P) = ]{C [GI(P, DT + Go(P, 1) Z—lj:l @37

where P is the field point. The functions G; and G, are
defined in Table I for each modal field component. In
this table Ny and N; are the Neumann functions of
order zero and one, respectively. Furthermore, (x, y)
and (x', ') are the x—y coordinates of the field and
source points, respectively. u,, u,, and u; are unit vec-
tors in the directions denoted by the subscripts.
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Fig. 5. Contour representation for integral evaluation.
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TABLE 1
DEriNITIONS OF Gy AND G FOR (36)
Field G1 G2
kZ
g (=) (6 - N 0
, N1(kR)
(x — 2) (uy- )] R
. . N.(kR
E, (] %) No(kR) (u-uy) (—]%‘f) (x — &) — ll(eR )
. Wp R/ Nl(kR)
E ) No(kR) (u,- —) (v — o) TR
v (D) ren@ew (%) -0
™ E, (j “’f) No(kR) 0
k2 Ni(kR)
2 () O-y) =2 0
( ) ) 0= R
k2 N(kR)
H (- —F)@-)—>
’ ( 1 ) (e =) =% 0

It is assumed here that the wall current J(I) has been
calculated at NV path length values {ll, by » - -, ZN}
around the waveguide contour by the method de-
scribed in Section V. The waveguide contour C is now
represented by straight-line segments drawn between
adjacent path points defined by the path length values
{Zl, by « -, ZN}, as is shown in Fig. 5. The straight-line
distance between adjacent path point pairs (I, k), (&,
L), -+, (ly, &) defines the set of lengths {ACy, AC,,

cee, ACN}. The kth such straight-line segment is

shown in Fig. 6. The current J is assumed to be linear
with path length variation and is given by

s = L

AC

k

G—=b) + In (38)



SPIELMAN AND HARRINGTON: WAVEGUIDES OF ARBITRARY CROSS SECTION

where I; and Iy,; are computed current values at /; and
Iy, respectively. The path length value [ in (38) is taken
along the straight-line segment of length AC;. If P is not
near the contour C, then (37) is computed assuming
straight-line behavior of the integrand so that

field (P) =
| ¥ G1(P, L) (k1) + Gi(P, bia) T (le)
R [Go(P, ) + GalP, )]~ T [ACH (39)

k

Here, Iy and /s are the segment midpoints shown in Fig.
6.

TE and TM mode electric field components at points
near the contour C are evaluated as follows. For point P
near the rth contour subdivision the electric field com-
ponents are evaluated by

field (P) =
|~ G1(P, k)T (1) + Gi(P, L) T () )
— Ty — I \AC
2 kz + [GoP, b2) + GalP, lo)] '“} ¢
(hsr) ACE

—_

|:G1(P Ly )T (b 3—y) + Gol( P, lrgsny)

fra — I':| AC, + I
ACT r Ty

r=1,2 -+ N

I

i=1,2 (40)
where I,; is developed and defined elsewhere [2, pp. 91—
95], with the index ¢ being described in the same refer-
ence. I,; and » are as shown in Fig. 6 with 2 =7.

The evaluation of the magnetic field components at
points near the waveguide wall is made as follows. The
TE rectangular field component H, is given by

H.(P) = J(,.), 1=1,2 (41)
where J(/.;) is given by (38) evaluated at ;. Again, the
treatment of the index 1 is treated in detail elsewhere [2,
p. 45].

The TM rectangular magnetic field components H,
and H, are evaluated according to

H(P) = 7() 2 -2
x - T ACT

(42)

H(P) = () 22

AC, (43)

where J(l.;) is evaluated as described for (41), while
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a

Fig. 7. Single-ridge waveguide cross section.

(%1, 1) and (xs, ¥;) are pairs of rectangular coordinates
locating the ends of the rth contour subdivision. Again,
it is the th subdivision to which point P is in proximity.
If point P is at the center of a contour subdivision, then
H,(P) and H,(P) are each taken to be the average of
H; and H, evaluated at the centers of the adjacent half
subdivisions.

VIII. ExaMPLE—RIDGE WAVEGUIDE

The accuracy of the method presented here has been
verified on computations of cutoff wave numbers, wall
currents, and modal field distributions of the first sev-
eral modes in rectangular and circular waveguides [2,
pp. 47-70]. The high degree of accuracy inherent in this
method will be discussed in Section IX.

In this section computed values of cutoff wave num-
bers, wall currents, and modal field distributions are
presented for modes of the ridge waveguide shown in
Fig. 7. In all computations presented, the waveguide
has been subdivided so that

AC
— < 0.15 (44)
A
where AC is the length of the longest straight-line seg-
ment used in the waveguide contour representations.

A. Cutoff Wave Numbers

Exact solutions for the single-ridge waveguide in
Fig. 7 are not known. For this reason, values of cutoff
wave numbers computed by the method developed here
are compared to other estimates of the exact cutoff wave
number, Values tabulated in Table II correspond to the
waveguide in Fig. 7, with dimensions in the proportion
aibicid=2:4:2:1. The values computed by the method
developed here are believed accurate to within an error
of 1 percent compared to exact values.

B. Wall Currents
For the single-ridge waveguide shown in Fig. 7 with
dimensions in the proportion a:bic:d=2:4:2:1, the

computed wall currents for the dominant waveguide
mode and the lowest order TM mode are shown in Fig.
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TABLE 1II
NormaLIzED CuTtoFF WAVE NUMBERS (kb) FOR THE SINGLE-RIDGE WAVEGUIDE
Wave Number (kb)
Matrix Percent Reference {16] Percent Reference [19] Percent
Order Mode Computed Reference Difference Wave Number Difference Wave Number Difference
13 TEedd 2.2566 2.2508 0.31 2.2627 0.27 2.2412 0.68
15 TEeven 4.9373 4.8404b 2.0 4.,9251 0.25 4.8460 1.9
13 TEedd 6.5218 6.4575> 0.99 6.4864 0.54 6.4532 1.0
22 THeven 7.5361 7.5074p 0.38 7.5249 0.15 7.5188 0.23
29 TMeven 12.164 11,9740 1.6 12.1416 0.18
2 Value given in [9, p. 281] and [17].
b Value given in [18].
8. The values are plotted versus the distance around the 10 o000,
waveguide contour ABCDEF shown in the inset and o °°o
were computed for matrices of orders shown in Table 11, Zos| °
corresponding to each mode. In Fig. 8(a) the values are ° °
normalized with respect to the maximum value on the 0 l &
waveguide. In Fig. 8(b) the values were normalized with @y Dstance
respect to the second largest current value on the wave- £ o
guide. This scheme was chosen because the largest cur- a5k AT
rent value at point B is expected to be much larger than ool ©
other values on the waveguide. It is known [8] that the 2ol
transverse field components for either TM or TE modes : okoo
. . . o ° %0,
become large near a waveguide corner with an internal Uos o, A
r o o
angle greater than 180°. | °,0% o A .
OA 8 C D E F
Distance

C. Modal Fields

In Fig. 9 the distribution is given for the longitudinal
field component of the dominant mode in the ridge
waveguide treated in the previous two sections. The
computed values are normalized with respect to the
maximum value of field component over the cross sec-
tion. The values shown in Fig. 9 are plotted over the
shaded portion of the figure inset.

From field computations for rectangular and circular
waveguide modes, it was observed that erratic accuracy
was obtained at field points within less than one-fourth
of a segment from the wall. For TE modes, the approxi-
mation of the charge distribution by pulses is expected
to introduce somewhat greater error in values of electric
field computed at points near the wall. However, at this
time it is not known whether the formulation used is
inappropriate for computation at such points or whether
an error exists in the implementation of this formula-
tion. Note that for TM modes in an arbitrarily shaped
waveguide, the E, component is known to be exactly
zero at the wall, thus enabling a simple interpolation
using the values determined more accurately at points
greater than one-fourth of a segment from the wall.

IX. CONCLUSIONS

Six criteria are used here to assess the usefulness of
available methods for solving the problem of the arbi-
trarily shaped waveguide. They are the following.

1) The effectiveness of the method for waveguides of
different shapes.

(b)

Fig. 8. Ridge waveguide wall currents. (a) TEdd, kb =~2.2.

(b) TEeven, kb ~12.

0,804——0,818—0.845—0,858—0,896—0.933—0,967—0,991—1,000

0.780 0.797 0.831 0.845 0.885 0,930 0.967 0.994 1.000
o.'|74o 0.753 0.773 0.808 0.858 0.913 0.960 0.987 0.993
0.667 0,678 0.698 0.736 0,808 0,885 0.947 0,983 0.993
0,568 0.557 0,598 0.633 0.702—0.842—0,933—0,.978—0.990
0.447  0.453 0,468 0,491 0,522

0.307 0.311 0.319 0.327 0.331

|

0.149 0.158 0,161 0.163 0.160

|

0.0 0.0 0.0 0.0 0.0

Fig. 9. Longitudinal field component for the dominant mode in a
single-ridge waveguide.

2) The adaptability of the method to implementation
by computer program.

3) The ability of the method to compute the first
several modes in addition to the dominant mode.

4) The ability of the method to compute field dis-
tributions as well as cutoff wave numbers.

5) The accuracy of the method.
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6) The availability of the method in the form of a
working computer program.

The first five of these criteria were in essence estab-
lished by Davies [1] and will be considered first here.

Finite difference solutions [9], [10] are hampered by
slower convergence on waveguides with curved bound-
aries. This is due to the difficulty in imposing the prob-
lem boundary conditions. Furthermore, since higher
order modes are obtained in an iterative process, good
initial starts are necessary.

Point matching methods [11], [12] lose effectiveness
for waveguides of complicated shape. In particular for
reentrant regions, the usefulness of these methods seems
questionable.

A segment matching solution [13] used polynomials
which satisfy the boundary conditions as factors in the
expansion functions; hence each waveguide solution
becomes a separate problem.

Conformal mapping methods [14] require a trans-
formation of the waveguide shape that is dependent
upon the particular waveguide problem to be solved.
Hence each waveguide becomes a separate problem and
general implementation by computer program is diffi-
cult. Furthermore, the transformation required is
known explicitly for few cases and the approximation of
this transformation causes the effectiveness of the
method to suffer for a variety of waveguide shapes.

Methods using polynominal expansion functions [15],
[16] present the problem of choosing the order of the
polynomials. Also, for reentrant shapes the determina-
tion of transverse field distributions becomes more diffi-
cult.

The method developed in this work has been demon-
strated as satisfying the first five criteria above. Using
relatively low-order matrices, cutoff wave numbers are
determined to within a few tenths of a percent of exact
values, while computed distributions of both longitudi-
nal and transverse field components agree to within a
few percent of exact values. Furthermore, the method
developed here has been implemented by general com-
puter programs listed and described elsewhere [2, pp.
98-110].

The chief limitations of the method developed here
are as follows. The computation time for the determina-
tion of cutoff wave numbers can become substantial for

higher order modes. Secondly, the field values at points
within a quarter segment from the waveguide wall are
computed less accurately than values at points further
away.
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