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Further work will be required to fully evaluate the

effect of the inductive reactance, together with its com-

pensations, in microstrip and stripline designs of imped-

ance transformers and filters.
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Waveguides of Arbitrary Cross Section by Solution of a

Nonlinear Integral Eigenvalue Equation

BARRY E. SPIELMAN, MEMBER, IEEE, AND ROGER F. BARRINGTON, FELLOW, IEEE

Abstract—The problem of electromagnetic wave propagation

in hollow conducting waveguides of arbitrary cross section is for-

mulated as an integro-differential equation in terms of fields at the

waveguide boundary. Cutoff wave numbers and wall currents appear

as eigenvalues and eigenfunctions of a nonlinear eigenvalue problem
involving an integro-differentiaf operator. A variational solution is
effected by reducing the problem to matrix form using the method
of moments.

A specific solution of the problem is developed using triangle
expansion functions in the method of moments. The solution is sim-
plified by symmetry considerations and is implemented by two digi-

tal computer programs. Listings and fuff documentation of these
programs are available. This solution yields accurate determinations

of cutoff wave numbers, wall currents, and distributions of both

longitudinal and transverse modal field components for the first

several modes. Illustrative computations are presented for the single-
ridge waveguide, which has a complicated boundary shape that does
not lend itself to exact solution.

1. INTRODUCTION

LECTROMAGNETIC wave propagation in hol-

E
low conducting waveguides of arbitrary cross

section is a problem of considerable interest. An

interesting review paper by Davies [1] gives a compara-

tive discussion of many of the methods previously ap-

plied to this general problem. His discussion makes clear

that no single solution method has proved to be best for

all requirements that might be imposed.

In this paper a new solution for waveguides of arbi-

trary cross section is presented. The approach is based

on an integral operator formulation which affords a

unified treatment of the various classes of waveguide

shape. In principle, the first several modes can be ana-
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lyzed provided the boundary of the waveguide is closed.

The convergence characteristics and accuracy of the

method have been demonstrated previously [2]. Ex-

ample calculations of cutoff wave numbers and field

distributions are presented here for modes of the single-

ridge waveguide.

II. INTEGRAL FORMULATION

The problem is formulated as follows. For waveguides

containing only a homogeneous isotropic medium, the

electric field within the waveguide is expressed in terms

of the vector potential A and scalar potential @ as

E = –jJA – VI#I (1)
where

J
A = p JG(kR)dl (2)

c

$
~ = ; rrG(kR)dl. (3)

c

Here, G(kR) is the two-dimensional Green’s function

and can be expressed in terms of HO(2), the Hankel func-

tion of the second kind zero order as

G(kR) = : I?,(2) (kR) . (4)

Also, C is the contour bounding the waveguide cross

section, dl is the element of arc along C, R is the distance

between a source point and the field point, k is the wave

number, and p and c are the permeability and permit-

tivity of the medium within the waveguide. The quan-

tities J and u are the wall current and charge, respec-

tively, related by the equation of continuity. The
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boundary condition is expressed as

Et.. = O (5)

where tan denotes the tangential component of electric

field on C. The problem can now be stated succinctly as

L(J) = o (6)

where L is the integro-differential operator

L(y) = –% = [juA + vd]tm. (7)

Solution of (6) gives ,cutoff wave numbers {k. }

= {kl, k,, ~ .0 } and corresponding wall currents, {J.]

={JI, J,, 0, 0 ], on C. The modal fields are functions

of {J,, } and can be computed once the currents are

known.

III. REDUCTION TO MATRIX FORMULATION

The determination of waveguide cutoff wave numbers

and wall currents requires the solution of (7) subject to

the boundary condition in (5). To facilitate such a solu-

tion, (7) is reduced to matrix form by the method of

moments, which is closely related to Galerkin’s method

[3], [4].

A. Method of ..Moments Reduction

For the method of moments, define the inner product

(W, J)= $ W.Jdl (8)
c

where the vectors W and J are tangential to C. A set of

expansion functions {J. } is chosen and the current on C

is expanded as

J = z I.Jn. (9)
n

Using this expansion for J and invoking the linearity of

the operator L in (7)

z I.L(J.) = – E,.,. (lo)
n

A set of testing functions { W~ } is now chosen such that

each W~ is tangential to C. Taking the inner product of

each W~ with (10) yields

~ 1.(Wm, L(JJ) = (VVm, -E) (11)
n

form= 1,2, -.. . Equation (11) can be written as the

generalized network matrix equation

[Z][I] = [v] (12)

which upon application of the boundary condition in (5)

becomes

[z] [1] = [0]. (13)

The present form of the elements in the impedance

matrix is

Zmn =
$

Wfi . (jcoAn + V.+n)dl. (14)
c

Fig. 1. Details of the contour subdivision.

The subscript n denotes that An and I& are potentials

due to J. and c%. Applying the one-dimensional form of

the divergence theorem to @.W~, (14) is transformed to

the computationally advantageous form [2 ]

$Z.n = jd (Wm”A. + um@.)dZ (15)
c

where u~ is defined as

1
Um= —yv. wm. (16)

jw

To this point the matrix formulation is completely

general and was achieved without reference to TE or

TM mode characteristics. The wall current for TE

modes at cutoff is two-dimensional and circumferen-

tially directed. For such a current the impedance ele-

ment form in (15) is suitable.

However, for TM modes at cutoff the wall current is

two-dimensional, axially directed, and hence diver-

genceless. It follows that the impedance element in (15),

for TM modes, becomes

(17)

In the following sections, specific expansion and testing

functions are used with (15) and (17) to effect solutions

for TE and TM modes, respectively.

B, TE Matrix Elements

The TE mode impedance matrix elements, expressed

by (15), can be cast into a form convenient for computa-

tion by first writing the element in greater detail as

‘m.=&Ad’[’”’wm”J.+7k(V’”WJ(V”JJ
Ho(2)(kR)

. (18)
4j

Here, the unprimed symbols dl and V refer to source lo-

cation variation, while the corresponding primed sym-

bols relate to variation in field point location.

A specific formulation evolves by dividing the contour

C into IV segments, not necessarily equal in length. The

end points of these segments are defined by a set of

(N+l) parameters {1=11=0, l=lz . ~ “ , J=lir+l}, as

shown in Fig. 1, Here, 1 is the path length proceeding
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Fig. 2. (a) Triangle function. (b] Derivative of triangle function
with pulse approximations indicated by broken lines.

counterclockwise around the contour C from any con-

venient reference point 1= II’= O.
The sets of expansion and testing functions are

chosen as triangle functions, It is known that subsec-

tional expansions using pulse or triangle functions give

well-conditioned matrices [3 ]. Triangle functions were

chosen for use here since the current will be differenti-

ated to obtain the charge. Furthermore, it has been de-

termined empirically that a triangle function expansion

yields computed wave numbers which converge to exact

values about twice as fast as those computed using a

pulse function expansion. The triangle expansion and

testing functions are defined as

Jk = Wk = T(J – Zk)ul, k=l,2, . . .. N(l9)

where T is the triangle function represented by a solid

line in Fig, 2(a). Also, ul is the unit vector in the direc-

tion of increasing parameter 1 and is tangent to C at

path length value 1. Now zn. can be written as

+ ~; T’(J’ – L) T’(1 – 1.)

~o(z)(~~)

4j 1(20)

where Tf is the derivative of a triangle function and is

represented by the solid line in Fig. 2(b).

The evaluation of the integrals in (20) is facilitated

by making the following approximations. The triangle

functions are approximated by four pulses with ampli-

tudes ~, ~, ~, ~, as shown in Fig. 2 (a). The derivative T’

of the triangle function is represented exactly by four

pulses with the amplitudes 1 /AJ~_l, 1 /A1k–1, – 1 /AZk,

– l/AIk, as is illustrated in IFig. 2 (b). For the nth ex-

pansion function, the index p = 1, 2, 3, 4 designates the

four pulse intervals, respectively, for increasing path

length. Similarly, the index q =1, 2, 3, 4 is assigned to

the mth testing function.

4

‘K+lm~K-l
Fig. 3. Straight-line representation of the waveguide contour.

Consider the contour interval spanned by the kth ex-

pansion or testing function, as is shown in Fig. 3. In this

figure the actual contour interval is indicated by a

broken line. The evaluation is facilitated by defining the

quantities depicted in Fig. 3.

The portion of the actual waveguide contour, repre-

sented by a broken line in the same figure, is effectively

replaced by these straight lines for the evaluation of the

integrals. Furthermore, define the additional quantities

& = tk+l— tk, k=l,2,3,4 (21)

{

1/4,
Th =

3/4,

k=l,4

k= 2,3
(22)

Tk’ =

As is shown in detail elsewhere [2], the TE mode imped-

ance element is given in final form by

where for coincident pulse intervals

ykAtp
Gqp=l–j~log —

T 8e “

For noncoincident pulse intervals

(25)

G,p = H,(’) (R,,). (26)

In (24) the upper sign is taken for (P, q> 3) or (p, q S 2);

otherwise, the lower sign is taken. The unit vectors u *

and up are parallel to the @ and ~th straight-line seg-

ments representing the @h and @h straight-line seg-

ments representing the qth and @th pulse intervals, re-

spectively. AtP and At~ are determined by

Atk= ti+l— tk, k=l,2,3,4 (27)

and RCP is the distance between the centers of the ~th

and fith pulse intervals. The remaining quantities Y and

e in (25) are the natural logarithm of Euler’s constant

and the natural logarithm base, respectively. It is sig-

nificant that the use of (24) produces a symmetric ma-

trix, enabling a reduction in the effort necessary in

matrix calculation.
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C, TM Matnix Elements

By following a procedure analogous to that used for

TE mode matrix elements, the TM mode matrix ele-

ments can be written as [2]

4;6 ~>, [fkAt~)TqTP]GgZJ
Zmfi = –— (28)

where GgD is defined by (25) or (26), depending on

whether the source and field pulse intervals are coinci-

dent or noncoincident, respectively. The pulse ampli-

tudes T~ and TP are defined by (22), The interval

lengths AtQ and AtP are expressed by (2 1). The use of

(28) for TM mode impedance element calculation pro-

duces a symmetric matrix with resulting computa-

tional simplification.

IV. DETERMINATION OF CUTOFF WAVE NUMBERS

It has been shown [2, pp. 74–80] that the waveguide

problem formulation given by (6) is a nonlinear eigen-

value problem. The cutoff wave numbers of the wave-

guide are the eigenvalues in this eigenvalue problem,

while the wall currents are the eigenfunctions. This sec-

tion sets forth the procedure used to determine these

eigenvalues, while the determination of the wall cur-

rents is discussed in the next section.

Nontrivial solutions of (13) exist only if the following

is true [5]:

I det Z(k) I = O. (29)

Equation (29) will be precisely true only if the set of

expansion functions used in the method of moments is

complete on the domain of the operator L, given in (7).
In general, the use of a finite set of expansion functions

will provide only an approximation of the exact wall

currents. For adequately approximated wall currents

the cutoff condition is characterized by

I det Z(k) I = min. (30)

Equation (30) has been verified for a wide variety of

waveguide shapes and mode orders. Typical behavior of

Idet Z(k) I versus wave number is illustrated in Fig. 4.

The curve shown was computed for the TEOI mode in a

2 X 1 rectangular waveguide with 12 triangle functions

taken around the entire cross-section contour. The con-

vergence of computed cutoff wave numbers towards the

exact value as matrix size increases has been verified

empirical y and is illustrated elsewhere [2, pp. 26–29 ].

The evaluation of the determinant of the impedance

matrix for all computations shown here was accom-

plished by Gauss’ method [6] adapted for use on com-

plex matrices. The determination of a minimum, satis-

fying (30), is made by searching I det Z(k) I as k is in-

creased by prescribed steps. The size of these steps is

reduced for successive scans of k after a minimum in

Idet Z(k) I is located. The step sizes have been deter-

mined by experience.

Ic

1(

0~
1

2x1 Rectangu Iar Waveguide
12 Expanaon Functions

Fig. 4. Magnitude of det Z versus normalized wave number in
vicinity of TEO,I cutoff.

V. DETERMINATION OF WALL CURRENTS

The electric and magnetic field intensities in a wave-

guide at cutoff are each uniform in phase over the guide

cross section. It follows that the wall currents are uni-

form in phase about the waveguide contour. The cur-

rents are taken to be purely real around this contour.

At cutoff, (13) can be separated as follows:

[zl[~l = [RIII] + 31X][I] = [0] (31)

where

[R] = Re [z] and [x] = Im [z]. (32)

For a complete expansion function set, (31) infers that

ldet Xl=O. (33)

It follows from (33) that at least one of the eigenvalues

of matrix [X] is zero.

For an incomplete expansion function set, the condi-

tion in (33) becomes

[ det X I = min. (34)

Hence, an approximate wall current is an eigenvector of

the matrix [X(k) ], corresponding to the eigenvalue of

smallest modulus. The matrix [x. ] is the matrix [x]

evaluated at a cutoff wave number determined by the

method of the Section IV. Since (24) and (28) imply a

symmetric impedance matrix, then the matrix [x, ] is

also symmetric. The eigenvalues of [Xc] are therefore

real quantities.

The eigenvalue problem

[xC][I] = XII] (35)

is solved numerically by using the Givens–IHouseholder

method [7]. For a waveguide with a number of degen-

erate or nearly degenerate modes, it is found that a
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corresponding number of smallest eigenvalues are ade-

quately computed, differing from each other by less

than one order of magnitude. The computed eigenvec-

tors corresponding to these multiple smallest eigenval-

ues are good approximations to the wall currents of the

multiple modes.

VI. SYMMETRY CONSIDERATIONS

If a waveguide cross section is symmetrical about an

axis in the transverse plane, then the problem can be

reduced to two cases, one for wall currents with even

symmetry about the axis and the other for currents with

odd symmetry. It has been shown elsewhere [2, pp. 8 l–

84] how significant savings in computation time and

storage requirements can be achieved when such sym-

metries exist. For larger arrays the computation time

for matrix element evaluation is reduced by nearly a

factor of 2, while the time required for the solution of

the eigenvalue problem is reduced by about a factor of

8.

The computations presented in this paper were done

utilizing the symmetry treatment discussed in this sec-

tion. The formulation prior to this section is not limited

to symmetric waveguides. The method for determining

field distributions, as presented next, is also not neces-

sarily limited to symmetric waveguides.

VII. MODAL FIELD DETERMINATION

The expressions used in the field evaluation scheme

described in this paper were derived in detail in [2]. The

scheme proceeds with the following consideration. Any

linear measurement at a point P due to a current J

about a contour C can be expressed as a linear function

of J, that is,

field (3’) =
J

1?. Jdl (36)
c

where IV is a known function. The current J in (36) is

computed by the method discussed in Section V.

The forms taken by (36) for the rectangular coordi-

nate modal field components are described as follows.

Let a rectangular coordinate system be defined with the

z axis in the direction of wave propagation. The TE and

TM modaf field component expressions were developed

elsewhere [2, pp. 30–46, 91–95 ] and are described sym-

bolically by

field (P) =
$[ 1G,(P, l)J + G,(I’, 1) : dl (37)

c

where P is the field point. The functions GI and G2 are

defined in Table I for each modal field component. In

this table iVo and iV1 are the Neumann functions of

order zero and one, respectively. Furthermore, (x, y)

and (x’, y’) are the x–y coordinates of the field and

source points, respectively. u,, Uv, and U1 are unit vec-

tors in the directions denoted by the subscripts.

Fig. 5.

c

Contour representation for integral evaluation.

Fig. 6. kth path length interval.

TABLE I

DEFINITIONS OF G, AND G, FOR (36)

Field G, G,

TE H, (-~q [ (Y – Y’) (u. UJ
4

0

– (. – .’)(12,. w)] +;~~

E.
()

_j@.J (x _ ~,, y,(klt)
j a+ iVO(k.R) (u=. UJ

() 4 kR

E.
()
j ‘~ iVO(kR) (UU. UZ)

()
–/!: (y _ ~r) !!!?9

kR

TM E,
()
j ‘; N,(kR) o

Hz
()

+ (Y – Y’) qg~ o

H.
()

– $ (. – ,’) ~;: o

It is assumed here that the wall current ~(l) has been

calculated at ~ path length values {11, 12, . . . , ZN }

around the waveguide contour by the method de-

scribed in Section V. The waveguide contour C is now

represented by straight-line segments drawn between

adjacent path points defined by the path length values

{h, h, . ~ ., I?N}, as is shown in Fig. 5. The straight-line

distance between adjacent path point pairs (11, 1,), (1,,

13), ..., (1~, 11) defines the set of lengths {ACI, AC,,
. . . ACN }. The kth such straight-line?

shown in Fig. 6. The current J is assumed

with path length variation and is given by

segment is

to be linear

(38)
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where lk and Ik+l are computed current values at Ih and

Zk+l, respectively. The path length value 1 in (38) is taken

along the straight-line segment of length ACk. If P is not

near the contour C, then (37) is computed assuming

straight-line behavior of the integrand so that

field (P) =

I
I%(P> k)J(zk,) + GI(P, h)J(kz)

% 1r,+, – Ih Ack. (39)
2 k., + [G@’, h,) + G,(P, Zk,)] —~

Here, &l and zk~are the segment midpoints shown in Fig.

6.

TE and TM mode electric field components at points

near the contour C are evaluated as follows. For point P
near the rth contour subdivision the electric field com-

ponents are evaluated by

field (P) =

IN
( G,(P, zk,)J(zk,)+ G,(P, l,,)J(zk2) ),

1

[
+ ~ GI(P, J,(3-JJ(l.(3-,)) + G,(P, Z,(,-,))

1,+1 — I,

1
ACT + I,i,

AC,

?’=1,2, . . ..N

;= 1,2 (40)

where I,i is developed and defined elsewhere [2, pp. 9 l–

95], with the index i being described in the same refer-

ence. 1,1 and 1,2are as shown in Fig. 6 with k = r.
The evaluation of the magnetic field components at

points near the waveguide wall is made as follows. The

TE rectangular field component H. is given by

H,(P) = J(l,,) , i=l,2 (41)

where J(lri) is given by (38) evaluated at lri. Again, the

treatment of the index i is treated in detail elsewhere [2,

p. 45].

The TM rectangular magnetic field components Hz

and Hu are evaluated according to

(42)

(43)

where J(l,i) is evaluated as described for (41), while

Fig. 7.

T’ti

Single-ridge waveguide cross section.

(w, YJ and (w, YJ are pairs of rectangular coordinates

locating the ends of the rth contour subdivision. Again,

it is the rth subdivision to which point P is in proximity.

If point P is at the center of a contour subdivision, then

HZ(P) and Hu (P) are each taken to be the average of

H. and Hu evaluated at the centers of the adj scent half

subdivisions.

VII I. EXAMPLE-RIDGE Tk’AVEGUIDE

The accuracy of the method presented here has been

verified on computations of cutoff wave numbers, wall

currents, and modal field dktributions of the first sev-

eral modes in rectangular and circular waveguides [2,

PP. 47–70]. ‘rhe high degree of accuracy inherent in this

method will be discussed in Section IX.

In this section computed values of cutoff wave num-

bers, wall currents, and modal field distributions are

presented for modes of the ridge waveguide shown in

Fig. 7. In all computations presented, the waveguide

has been subdivided so that

(M)

where AC is the length of the longest straight-line seg-

ment used in the waveguide contour representations.

A. Cutoff Wave Nq{mbers

Exact solutions for the single-ridge waveguide in

Fig. 7 are not known. For this reason, values of cutoff

wave numbers computed by the method developed here

are compared to other estimates of the exact cutoff wave

number, Values tabulated in Table II correspond to the

waveguide in Fig. 7, with dimensions in the proportion

a: b: c :d =2:4:2: 1. The values computed by the method

developed here are believed accurate to within an error

of 1 percent compared to exact values.

B. Wal[ Cuwents

For the single-ridge waveguide shown in Fig. 7 with

dimensions in the proportion a: b :c:d = 2:4:2:1, the

computed wall currents for the dominant waveguide

mode and the lowest order TM mode are shown in Fig.
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TABLE II

NORMALIZED CUTOFF WAVE NUMBERS (kb)FOR THE SINGLE-RIDGE WAVEGUIDE

Wave Number (W)
Matrix Percent Reference [16] Percent Reference [19] Percent
Order Mode Computed Reference Difference Wave Number Difference Wave Number Difference

—
13 TEodd 2.2566 2.250’ 0.31 2.2627 0.27 2.2412 0,68
15 TEe~en 4.9373 4. 8404b 4,9251 0.25 4.8460 1.9

TEOdd 6.5218 6.4575b
X

:::9 6.4864 0.54 6.4532 1.0
TEeVem 7.5361 7. 5074b 0.38 7.5249 0.15 7.5188 0.23

29 TMeven 12.164 11 .974b 1.6 12.1416 0.18

‘Value given in [9, p. 281] and [17].
b Value given in [18].

8’. The values are plotted versus the distance around the

waveguide contour AB CDEF shown in the inset and

were computed for matrices of orders shown in Table II,

corresponding to each mode. In Fig. 8(a) the values are

normalized with respect to the maximum value on the

waveguide. In Fig. 8(b) the values were normalized with

respect to the second largest current value on the wave-

guide. This scheme was chosen because the largest cur-

rent value at point B is expected to be much larger than

other values on the waveguide. It is known [8] that the

transverse field components for either TM or TE modes

become large near a waveguide corner with an internal

angle greater than 180°.

C. Modal Fields

In Fig. 9 the distribution is given for the longitudinal

field component of the dominant mode in the ridge

waveguide treated in the previous two sections. The

computed values are normalized with respect to the

maximum value of field component over the cross sec-

tion. The values shown in Fig. 9 are plotted over the

shaded portion of the figure inset.

From field computations for rectangular and circular

waveguide modes, it was observed that erratic accuracy

was obtained at field points within less than one-fourth

of a segment from the wall. For TE modes, the approxi-

mation of the charge distribution by pulses is expected

to introduce somewhat greater error in values of electric

field computed at points near the wall. However, at this

time it is not known whether the formulation used is

inappropriate for computation at such points or whether

an error exists in the implementation of this formula-

tion. Note that for TM modes in an arbitrarily shaped

waveguide, the Ez component is known to be exactly

zero at the wall, thus enabling a simple interpolation

using the values determined more accurately at points

greater than one-fourth of a segment from the wall.

IX. CONCLUSIONS

Six criteria are used here to assess the usefulness of

available methods for solving the problem of the arbi-

trarily shaped waveguide. They are the following.

1) The effectiveness of the method for waveguides of

different shapes.

ED

I
E

c
25 FA

20 0

‘iti.&ci2A SCD E
Dfstanc~

(b)

Fig. 8. Ridge waveguide wall currents. (a) TE”dd, kb = 2.2.
(b) TEe”en, kb z==12.
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I
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0.667 0.678 0.698 0.736 0.808 0.885 0.947 0.983 0.493

I I
0.568 0.557 0,598 0.633 0.702 —0.842—00933—0.978 —0.990

o. 447 0.453 0.468 0.491 0. 522

o.io7 0.311 0.319 0.327 0.;31

I
0.149 0.158 0.161 0.163 0.i60

I
O.A 0.0 0.0 0.0 0.0

Fig. 9. Longitudinal field component for the dominant mode in a
single-ridge waveguide.

2) The adaptability of the method to implementation

by computer program.

3) The ability of the method to compute the first

several modes in addition to the dominant mode.

4) The ability of the method to compute field dis-

tributions as well as cutoff wave numbers.

5) The accuracy of the method.
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6) The availability of the method in the form of a

working computer program.

The first five of these criteria were in essence estab-

lished by Davies [1] and will be considered first here.

Finite difference solutions [9], [1o] are hampered by

slower convergence on waveguides with curved bound-

aries. This is due to the difficulty in imposing the prob-

lem boundary conditions. Furthermore, since higher

order modes are obtained in an iterative process, good

initial starts are necessary.

Point matching methods [11 ], [12] lose effectiveness

for waveguides of complicated shape. In particular for

reentrant regions, the usefulness of these methods seems

questionable.

A segment matching solution [13] used polynomials

which satisfy the boundary conditions as factors in the

expansion functions; hence each waveguide solution

becomes a separate problem.

Conformal mapping methods [14] require a trans-

formation of the waveguide shape that is dependent

upon the particular waveguide problem to be solved.

Hence each waveguide becomes a separate problem and

general implementation by computer program is diffi-

cult. Furthermore, the transformation required is

known explicitly for few cases and the approximation of

this transformation causes the effectiveness of the

method to suffer for a variety of waveguide shapes.

Methods using polynomial expansion functions [15 ],

[16] present the problem of choosing the order of the

polynomials. Also, for reentrant shapes the determina-

tion of transverse field distributions becomes more difi-

Cult.

The method developed in this work has been demon-

strated as satisfying the first five criteria above. Using

relatively low-order matrices, cutoff wave numbers are

determined to within a few tenths of a percent of exact

values, while computed distributions of both longitudi-

nal and transverse field components agree to within a

few percent of exact values. Furthermore, the method

developed here has been implemented by general com-

puter programs listed and described elsewhere [2, pp.

98-110].

The chief limitations of the method developed here

are as follows. The computation time for the determina-

tion of cutoff wave numbers can become substantial for

higher order modes. Secondly, the field values at points

within a quarter segment from the waveguide wall are

computed less accurately than values at points further

away.
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